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The Representation of A Class of Two State Stationary Processes
in Terms of Independent Random Variablest

by M. Rosenblatt

Introduction. Consider a stationary random process

{xn;n=0,j-_1, } . It has recently been of same interest to find
conditions on {xn} such that one can construct a process {Yn} with
the same probabllity structure as {xn} on the space of independent
identically distributed random variables {En} (say uniformly
distributed on [0,1]) by a Borel function £(§_,{_;,...) =

£(8) (€= (...,6_356,58;s---)) and 1ts shifts, that is,

Y = £(T%), n=0,#1,... . (1)

Here £ is to be a function of EO,E_I, ... and T is the shift
operator. It can be shown that a necessary condition 1s that
{xn} be purely nondeterministic or regular (in the terminology of
A. N. Kolmogorov)[ 5 ]. In fact it has been shown that the neces-
sary and sufficlent condition for such a representation in the
case of a countable state Markov chain is that it be regular [ 6 ].
Most of the sufficient conditions for such a representation in
the case of a continuous state Markov process contain something
reminiscent of a Doeblin condition [2 ]. We explicitly mention
and state an interesting sufficient condition of this type
obtained recently by Hanson:

(1) {xn} is a stationary regular Markov process

w
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(11) There exist Borel sets A,B of the state space
and a nonnegative measure ¥ on the state space such that

P(B) > 0 (F is_the stationary measure induced by the process on
the state space), #(A) > O and for all x€B and A'CA the transi-

tion measure

P(x,At) 2 g(ar). (2)

It 18 clear that it would be extremely interesting to
investigate a class of processes which would not satisfy a
Doeblin-like condition even when they are imbedded naturally in
a Markov process. The two state stationary regular processes
are such a class. Moreover these processes are of considerable
interest in their own right, particularly in communication
problems,

Much of this paper will concern itself with a reinter-
pretation of results of Doeblin and Fortet [1 ] and Harris [ 3]

with respect to such a representation.

Preliminaries. Since we will imbed the two state processes in
Markov processes in a natural way, it will be'reasonable‘to glve
a sufficient condition for a representation of type (1) for
Markov processes. Let {Yh;nso,:;,...} be a stationary Markov
process. We can just as well assume the moment EIYhI exists

since a nonlinear instantaneous transformation can effect this.
Further assume there is a se ce of inde t random variables
En uniformly distributed on [0,1] with En’£n+1"" independent

of Y ,¥ 1,... and a family of transformations Te(:)(with Tz(y)




a Borel function of (E,y)) such that Tgn(Yn) =Y ., with

probability one. One can then prove the following theorem Jjust

as in [5].

Theorem 1. There is a representation of type (1) for {Yn}

in terms of the {{ } process if and only if there is a set S of

yl polnts of measure one such that

TEnTEn-ln.Tzlyl ) TIEnTIEn-l.”T'Elyl —°0 (3)

4
in El,...,zn,... measure for all yl,ylé,s as n—> © ,

Our object 1s to study stationary processes with two
states, say O and 1. We shall now imbed such a process in a
Markov process following Harris. If we let Y = (Xh,Xh_l,...)
the new process {Yh;n=o,3;,...} 1s a stationary Markov process

th

where the k™" coordinate of the ¥ vector (!n) = X The points
k

Yy are halfway infinite sequences of zeros and ones. The Borel

field is generated by sets of the form (y) = x,.. The transition
k

function 1s essentially given by

#y) = PIX ., = (XX _5,...) =¥] ()
which can be taken as a Borel function in y. If we set
x
z =35>+ -E% + ... (5)

a real number z, 0 < z < 1, 1s obtained. All real numbers z
have a unique binary representation except for those which have
a finite binary expansion. These have two binary expansions,
either with a final infinite sequence of zeros ...1000... or
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a final infinite sequence of ones ...0lll... . However, the set
of these numbers 1s countable. All points of this type must have
measure zero because of the stationarity of the measure except
possibly for .000... or .1ll1ll... . We can therefore adopt Harris!
convention in which the binary expansion of 1 is taken as .11l...
and in all other ambiguous cases the expansion terminating in
zeros 1s preferred to that terminating in 1l!'s. The random
vectors Yn will be identified with the réal numbers given by the
binary expansion ( 5) subject to the convention adopted above.
Thus the Markov process {Yh} is to be regarded as one with state
space the real numbers y, O <y <1, and transition mechanism

+ 2 yly, =yl. (6)

Nj=

1-P[Y, = 53 y1Y, = y] = g(y) = PlY,,, =

A regularity condition on the transition function @(y)
due to Doeblin and Fortet [ ] 1s now described. We use the
notation (x-y)m to mean that the first m digits in the binary

expansion of x are the same as those in y. Let
e, = (x:;gmlﬁ(x)-ﬂ(y)l . (7)

Note that the e, are a monotone sequence of numbers. The condi-

tion introduced by Doeblin and Fortet 1s
Ze < oo, 8
m (8)

We shall assume either

#(y) >0 0<x<1 (9)



or

1-#(y) >4 >0 0<x 1.
Notice that ( 9) implies that e, <1.

Some Results on Convergence. We shall first give in some detail

a theorem due to Harris. It 1s given in detail because Harris
Just briefly gave a sketch of the proof and it does play a basic
role in the development of one of our results. The method is
related to an idea of Doeblin.

Let 51,52, ... be independent random variables uniformly
distributed on [0,1]. Define the processes Y = Y (y),
Y, - Y (y'), 0< ¥,5' < 1, as follows. Let ¥, =y, ¥, = y!
and glven Yn,'l;1

Y 1r g, > #(Y,)

+ % Y, if zn < ﬁ(yn)

Y =

ntl (10)

o= N

]
with the corresponding representation of Y;rf-l in terms of Y n
and En'

Theorem 2. If conditions (8) and (g) are satisfied then

P(IY Y| >e) = 0 (11)

for each fixed € >0 a8 n —> co uniformly in y,y°’.
1 4 s
Let U =1 (Un-:l) 1Y .- (1+!n)/a (ir Y. = (1+Yn)/2) .
Then
] L] !
P(U U 1Y, Y ) < 18(Y,)-g(Y )] . (12)
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We first want to show that almost every pair of sequences {Yh},
{Y;} (both generated by the En's) have a k-tuple of U coincidences
(U=Ups -+ 50y 1=Uny, 1) With probability one. This follows by
contradiction in the following manner. Suppose this 1is not the
case., Then there is a set A (of £ sequences) of positive
probabllity with no k-tuple of U coincidences. For large anough
n there is a set A , ACA , with P(An) < (1+5)P(A) (d > 0) that
is measurable with respect to the Borel field generated by
El"""n' Let

By p = (U =0y enss Uy =0y 0 o (13)
Then
P(AN Bk’n) - (1%)
- { p{B, | Y ,¥, }ap
n
2 (1-¢ )(1-e,) (1-e,)P(A ).
But then

P(Aan’n) - P(Anth’n) - P((An-A)an) (15)

> (1-:0).--(1-ek)P(An) - dP(A) > 0

if 3 is sufficiently small leading to a contradiction., Of
course, this argument is valid for every finite k.

Let cm be the set of { sequences for which the first
k-tuple of U coincidences ocours (and starts) at m. Then the
C, are disjoint and El P(C;) = 1 by the argument of the previous
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paragraph. Given any fixed 8% > 0, for sufficiently large n

n
m§1 P(C,) > 1-d . (16)

' -
Note that we will have IYn+£'Yn+£| < e if L 18 such that 2 £ <e
! . ) -
and we have £ successive U coincidences Uy = UpseeeaUpip 4 |

]

P(1 ¥ p-Ypugl <) (27)

n ' '
2 m§1 P(Cmﬂ{Um_'_k = Um_'_k,...,Un.'_z = Un"‘l})

T (1-e) I P(C) > (1-8) O (i-e,)
P l-¢ P(C 1-3) O (1l-e
= =k Vo w2 I=k J
by inequality (15). If k is sufficiently large and & small

enough this will be close to one .since Ze, < oo, Thus given any

J
€ > O,P(lYn-Y;il >e) —> 0 as n —>© uniformly in y,y!.

The following corollary was of primary interest to
Harris.

Corollary. Under conditions (8) and (9 )

F (zly) = (Y, < z|¥; = 3) — &(z) (18)
uniformly in y as n —> oo. G(z) is the one and only stationary

distribution for the Yn process.
For a given y one can find a sequence n, such that

rni(zly) —> Hzly) (29)

weakly. From (11) it follows that P, (zly') = 6&(z]y) weakly
1
independently of y' and hence G(z|y) = G(z) is independent of y.
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Further the convergence is strict at continuity points z of G(z).
Given any € > O for a given continuity point z there is a value
of n sufficiently large so that for ny >n

ani(zly) - &(z)] <e (20)
independently of y. Then
R (zly) = | 7, (elyh)er, , ('19) (21)

and hence F,_(z|y) = @(z) uniformly in y a8 n —> c0. If

#(1) = 1(#(0)=0)G(z) must have a jump of magnitude 1 at 1(0).
If this is not the case one can show the limit distribution G
is continuous. Let ¢°(y) = 1-%(y), ﬂl(y) = #(y). It is clear
that |

22«

1 28y - -
Foalzly) = = ,(yt)ar (y1y). (22)

J=o0 Jo
Because of the regularity condition ( 8 ) we can go to the limit

and obtain
22~

1 2z-3
&z) = = ¢J(y)d0(y), : (23)
J=o0

)
an equation that any stationary distribution for the Yn process
must satisfy. The uniqueness of the stationary distribution @
is obvious.

We also mention an interesting result due to Karlin [ 4],
Theorem 3 (Karlin). If the function ¢ is monotone with

19(x)-g(y)] <p< 1 (24)



P (zly) = P(Y, < 2|¥,=y) = o(2)

where G 1s independent of y as n —» &,
Almost as an immediate result of Karlin's theorem we
have the following result

Theorem 4. If the function # is monotone with (24) satisfied
then

1
P(IYn- Ynl >e) >0

for each € >0 as n —> o for all y,y'.

We shall assume ¢ monotone nondecreasing since the case

of ¢ monotone nonincreasing can be reduced to this by inter-
"changing O!'s and 1's in the original X, process. PFurther let us

“take f#(0)F0, #(1)¥1 since otherwise we are in the trivial situa-

tion in which G(z) has a jJump of magnitude 1 at O or 1. We have

already remarked that then G must be continuous. Consider the
transformations T (y)» 0 E <1, as given by (10), that is

4
T (y) = oA g ) . (25)

33y i € <A,
Al the'runceiona '11;(-) are monotone nondecreasing since #(y)
is monotone nondecreasing. Hence, given any y,y! with
o<y<y' g1
Tg(y) < Te(y) (26)

all . Y = Y
for £, 0E 1. Thus if n T‘n—l Tcly,
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Y=T§

!
LI 4 L] ' '
n TEIy with y < y! it follows that Yn > Yn. However,

n-1
we know that Tn,Yr'! have a common limiting distribution G(z) which

1s continuous . But
P{Y, >2,Y_ <z}+ PlY, <z} =P{Y <a1) (27)

so that
]
Py, > z,¥ <z} -0 (28)

at every poiln®t z as n — <, Given any € > 0 one can find k(e)
goints 24 < Z— € oo £ 2y such that

- M ' '
. JL=_)1{Yn < zJ‘Yn > zJ} ) {Yn-Yn >el.

It therefore SFollows that P{¥ -Y > e} —> O for every e > 0 as
n —> 0 and he=nce Y;-Yn —> O in probability as n —> o0, This
has been carriMed out for any two points y,y! with y < y'. How-
' ever, given ary two points y,y' we can find a third point y"

* (assuming bottm y,y! > 0) such that y" < y,y' and therefore
.'Yr:-Yn —> 0 ass n —> oo for all y,y'.

Representatiorm of 0O-1 Processes. We now bdbriefly state and prove
the main resul_t.

Theorems. Let= (¥, ;n=0,+1,...} be a stationary two state process
(states 0 and 1) with transition function @#(y) satisfying either

(8) and (9) or= monotone with (24). There is then a seguence of
. independont remndom varisbles {g¢ ) uniformly distributed on [0,1]

. such that Yn! has the one-sided representation (1) in terms of
the {n. ,
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It is clear that there is a stationary process satisfy-
ing either conditions (8) and (9) or (24) by the argument of
the corollary in either of these cases. Further the probability
structure of such a stationary process is uniquely determined by
the transition function #(y). Let {¥ ;n=0,11, ...} be such a
stationary process. @iven the {Yn} process let {nn3n=o,_-tl,...}
be a sequence of independent random variables uniformly distributed
on [0,1] and independent of the {Yn} process. We shall now
construct a sequence of independent random variables {{n}
uniformly distributed on [0,1] that satisfy the assumptions of
Theorem 1. Of course the {Yn} sequence and {En} sequence will
be dependent. Let d be the function on 0,1 such that 3(0) = 0
and (1) = 1. Set

En = b(ayml"yn)ﬂnp(yn) (30)
+ (1-8(2Y,,, -¥, DAY )+n, (1-8(¥,))} .

Now

P{E, < 1T} = Pi{n, < t/8(2 ) 1Y, Jp(Y,) -
31
+ P{n, < [6-@(¥,) V/[1-g(Y ) 1Y }(21-g(¥,)) .

If0< tg ¢(Yn) the second term on the right of (31) is zero

and we have
P, gty )=t 0¢gtgpy). (32)

Ir ﬂ(Yn) < t < 1 expression (31) becomes

(Y
HL,) + Ty (Ar,)) (33)
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so that
P{g, < t1¥ } = ¢ (34)
for all t, 0 L t < 1. Further
P{E, S boseesly £ t1Y%) (35)
) f f 2 LA T | SUPPIOE % 45 ) 1 £ SN | SUPPRPRN A% &Y

En-1Stna1 §1<h

«o« P{EJIT}

f j P, <t ly pfe lv .
En-l-stn-l E1-51.;1
: cee P{EllYl}

= tntn-l...tl , o S tn, ... .,tl S 1.

Clearly the random variables {En} are such that En’€n+1""

" are independent of Yh,Yh

TE(°) as given by (25) are such that TEn(Yh) = Y ., with

RTERE and the family of transformations

probability one. Under conditions ( 8) and (9 ) it follows by
Theorems 2 and 1 that the {Yn} process has a representation of
type (1) in terms of the f sequence. Under monotonicity and
condition (24) Theorems 3 and 1 imply that the {Yh} process has
a representation of type (1) in terms of the & sequence.

An Interpretation. An amusing interpretation of some of these
results can be given in the case of Markov chains. Suppose
there are two stations, the first transmitting messages to the
second.  We shall assume that the message that the first station
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wishes to transmit to the second has two states O and 1 and 1s
Markov of finite order with stationary transition mechanism.
However, there 18 a possibility that a third party may also
recelve the message. This 1is to be avoided and for that reason
station one decides to encode the message so that the encoded
message appears to be a realization of a sequence of independent
identically distributed random vafiables. Of course, the proper
decoder has to be supplied to station two. Assuming no distor-
tion in transmission, there will still be some loss of informa-
tion in the decoding and we shall try to get some measure of
thié loss of information if the encoding and decoding mechanism
are set up in a manner consistent with the discussion given
earlier.

We first consider the case in which the data which
station one wishes to transmit to the second station is a two
state Markov process (say X, ) with transition probability

matrix

l-p p 0 <p,q <1 :
( ) (36)
l-q gq P¥aq

The message that statlion one wishes to transmit need not be
stationary or have an infinite past. One can just formally
agree that the first Yl is any numbér Between 0 and 1 whose
first entry in its binary expansion is xl. Clearly in terms
of (36) the @ function will be given by
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0 1
#ly) = ply,,, =% +yly =3} = PSR (g

q if $<y <1
and the Yn's are generated recursively from Yl by the random
mechanism specified by (37). Station one will then encode the

sequence {Yn} in the {En} sequence as given by

-
nP g Yn+l’%+%yn OSYn<-2]=
£ = J1.1 1
n 1 4 it Y 4 ’§+2Yn §5Yn$ 1
ptn (1-p) if Y =3Y¥ 0<Y < 5
g (1-q) if ¥ =3 ¥ 1<y <2
LT n n 2 °n 2=2"n-=

where the nn's are independent random variables uniformly dis-
tributed on [0,1] and independent of the {Yn} sequence. Now

let us consider the appropriate decoding procedure to be applied
to the {En} sequence received by station two in order to recover
as much as possible of the original {xn;n-l,e, ...} sequence that
station one transmitted in encoded form. Suppose p < q. If

En < p it 18 clear that )%ﬂ = ] while if };n > q then xn+1 = 0,
If p<E <q (xn,xn+1) = (0,1) or (1,0) and this indeterminary
remains until the first Ek is encountered undershooting p or
overshooting q. Once such a Ek is encountered xml is determined
and all the following Xn's, n > ktl, are determined by the
following En values, n > ktl., However, the previous values xn,
n < k, can not be recovered. Once Ek is observed and X .,
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determined, the following Xh's are determined recursively by
setting
1 4f X =0, 0<E <p
w179 or Xx=1,0<( <q
o 1f Xn=0, p < En-s 1 (39)

or xn=1, q < En <1.

—
The random observations En that station two receives are, of
course, independent and identically distributed on [0,1]. Thus,
the expected time for the first {  (that is, £, ) undershooting
p or overshooting q to be observed is given by

E(k) =Zka¥1(1-a) = (1-a)~t (40)

with a = g-p. If a is not close to one this mean time will be
moderate in size.

A more general case of interest is that in which station
one wishes to transmit a two state kth order Markov chain {Xn}
with stationary transition mechanism, that 1s, the @ function
depends on y only through the first k places in the binary
representation of y. For convenience, assume that the range
of # 18 bounded away from zero and one. Then

#y) = plx,...0x) 1f 21? 3E}<y< 5 = +3p, (W)
=12 " =12 2
x, = 0,1 and
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®n = < L CPRRIYE RS Yn+1"%""%'yn
and g fg-_g_!n< g i}"'lﬁ
=12 =12 (42)
P(x)s e oo (Lopxy, e im)) 28 Yy =3 ¥,
k x k x
. mﬁlﬁsy"‘(.iEljJriﬁ

where the {qn} are independent random variables uniformly dis-
tributed on [0,1] and independent of the {Yn} (or equivalently
{)%}) sequence. Let
p = min p(x;,...,x)
X (43)

q = max p(x.l,...,xk).
X

Again the n's transmitted by station one will be independent
and uniformly distributed on [0,1]. As before 1if §, < p then

X 41 = 1 while if £, > q X ,, must be zero. Once one determines
the values of k neighboring Xt!s, say xn,xnﬂ, cea ,ka_l s all
following X'!'s can be determined by these and Erri-k-l’zn-l-k’ ces o
xn,xnﬂ, .o "’Sﬁk-l will be determined if none of the values
€1+ =25 nii-p £211 1n the range p to q. Let J be the first
time such a run of §{ values Jok+1? . 1 3 falling outside the
range p to q arise. As before let a = g-p. Then the mean time

for the first such run of ki values to occur 1s

B(3) = a{(1-a)"¥ 213, (44)
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